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CONVERGENCE ESTIMATES FOR MULTIDISCIPLINARY ANALYSIS AND

OPTIMIZATION

EYAL ARIAN ∗

Abstract. A quantitative analysis of coupling between systems of equations is introduced. This analysis
is then applied to problems in multidisciplinary analysis, sensitivity, and optimization. For the sensitivity
and optimization problems both multidisciplinary and single discipline feasibility schemes are considered.
In all these cases a “convergence factor” is estimated in terms of the Jacobians and Hessians of the system,
thus it can also be approximated by existing disciplinary analysis and optimization codes. The convergence
factor is identified with the measure for the “coupling” between the disciplines in the system. Applications
to algorithm development are discussed. Demonstration of the convergence estimates and numerical results
are given for a system composed of two non-linear algebraic equations, and for a system composed of two
PDEs modeling aeroelasticity.
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1. Introduction. In the last three years there have been a growing interest in the engineering com-
munity in the numerical solution of “multidisciplinary” (MD) problems [1]-[3]. A MD problem is defined
in this work to be a problem which involves the solution of a set of equations which can be divided into at
least two sets (disciplines). Three different MD problems are considered: the “Multidisciplinary Analysis”
problem (MDA), the “Multidisciplinary Sensitivity” (Adjoint) problem (MDS), and the “Multidisciplinary
Optimization” problem (MDO). The MDA problem is to solve a system of state equations, the MDS problem
is to compute the sensitivity of some given quantity with respect to “design” parameters which appear in
the state equations, and the MDO problem is to minimize a given cost-functional with respect to the design
variables. Typically each set of state equations models a different physical process and therefore many times
each set is dominated by different scales; the Jacobian of each set of equations is characterized by a differ-
ent eigenvalue spectra resulting in a large and ill-conditioned problem. Also the MD problem introduces a
practical difficulty of connecting large codes of different origin. Whenever possible (computational-wise) it
is desirable to perform the computation in a “loosely coupled” scheme in which most of the computation is
done in the disciplinary levels.

The recent effort in MDO is aiming at the development of new strategies and algorithms to solve the
MD problems in a “tightly-coupled” approach. In some cases the optimization process is performed in the
“system level” while the analysis and sensitivity analysis are performed in the disciplinary levels. Having
the sensitivities of all the disciplines, the system optimization iteration convergence can be analyzed with
classical methods developed for single discipline optimization. For such an approach this work is relevant
only to the development of algorithms to solve the MDA and MDS problems. References [1]-[3] summarize
most of the work done so far in MDO. R.J. Balling and J. Sobieski [4] propose several multi-level algorithms
for the solution of MDO problems in which the design process is decomposed into the disciplinary levels.
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E.J. Cramer et. al. [5] propose three fundamental formulations to MDO based on feasibility requirements:
Multidisciplinary Feasible (MDF), Individual Discipline Feasible (IDF), and All-At-Once (AAO). These
formulations were applied by G.R. Shubin [6] to aeroelasticity and it is reported that in general the less
feasible formulation, AAO, was the most efficient in practice.

The classical approach to such problems is the sequential (“one-at-a-time”) approach; solve each disci-
plinary problem separately, while freezing the variables of the other disciplines. Up-to-date the sequential
approach is used in applications to solve multidisciplinary optimization problems, for example in aircraft
design (e.g.,[7]). The sequential approach has the advantage that it is the simplest to apply since typically
there is a great deal of information and experience on numerical methods for the solution of each of the
disciplinary problems. However, in many cases such an approach is undesirable since it might not converge
to the MD solution at all [8], and in some other cases it might converge to the solution but slowly, requiring
numerous disciplinary solutions and exchange of data between the disciplines at each MD iteration. The
sequential approach is known in iterative methods for solving algebraic equations as the Gauss-Seidel algo-
rithm (for example [9] p.508), i.e., each of the equations in the system is solved separately for one variable
while freezing the variables of the other equations. Therefore, in this paper such an approach will be called
“a Generalized Gauss-Seidel” (GGS) approach. The GGS approach has a parallel version in which the disci-
plinary problems are solved separately in parallel rather than sequentially. This scheme is known in iterative
methods for solving algebraic equations as the Jacobi algorithm and therefore in this paper such an approach
will be called the “Generalized Jacobi” (GJ) approach.

Qualitative predictions of the GGS convergence for an MDO problem were done in [10], where it was
shown that the MD Hessian determines the coupling in a static aeroelastic optimization problem. Local
mode analysis of the MD Hessian was performed to prove that for the non-smooth error mode components
the problem has very weak coupling between aerodynamic design and structural design and therefore it
predicts that a sequential approach will be efficient for that problem.

In this paper, a quantitative convergence analysis is developed for the GGS (sequential), and GJ (par-
allel), schemes applied to MDA, MDS, and MDO problems. An upper bound for the convergence rate of
the GGS scheme is estimated by the maximal singular value of a “convergence matrix”, M, that is given in
terms of the Jacobians and Hessians of the problem. In problems governed by PDEs the convergence matrix
is an operator (typically non-differential) which determines the “coupling” between the disciplines in the
system. We claim that these operators have a fundamental role in the mathematical theory of MDO and
we give an explicit analysis of these operators for an aeroelastic model problem (Sec. 6). The motivation
behind that analysis is to be able to predict a-priori which of the subsystems in a given MD problem are
“loosely coupled” in the sense that a GGS approach will be computationally efficient when applied to the
solution of these sub-systems. The estimates allow to use mathematical theory, for example theory of Partial
Differential Equations (PDEs) in the differential level or linear algebra in the discrete level, to estimate these
convergence factors. Since the estimates are given in terms of the Jacobians and Hessians of the MD system
they can be approximated by existing analysis and optimization disciplinary codes. Throughout the paper
we assume that the problems at hand are well-posed and that there exists a unique solution; only the issue
of numerical convergence to the solution of these problems is addressed.

Demonstration of the convergence estimates and numerical results are given for a system composed of
two non-linear algebraic equations and for a system composed of two PDEs modeling aeroelasticity. The
numerical results are compatible with the analytical estimates.

Throughout the paper the following notation is used (some of the notation is taken from [11]):
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Ai - Analysis of system i,
Si - Sensitivity (Adjoint) analysis of system i,
Oi - Optimization of system i,
(Z1, Z2) - Single execution of Z1 followed by Z2,
[Z1, Z2] - Nested execution of Z1 followed by Z2,
[Z1‖Z2] - Nested execution of Z1 and Z2 in parallel (freezing the coupling information at each execution).
For example, (A1, A2) denotes the analysis of system 1 followed by the analysis of system 2, and

[O1(A1, S1)‖O2(A2, S2)] denotes a nested execution of solving in parallel the MDO problem composed of
disciplines 1 and 2 (freezing the coupling information at each execution), where in each disciplinary opti-
mization problem there is a sequential application of the disciplinary analysis and sensitivity analysis.

The paper is divided into sections as follows:
In Secs.2, 3, and 4 the MDA, MDS (Adjoint), and MDO problems are treated respectively.
In Sec.5 the theory is demonstrated on a non-linear algebraic set of two equations.
In Sec.6 the theory is demonstrated on a set of two PDEs modeling static aeroelastic system.
In Sec. 7 discussion and concluding remarks are made followed by the list of references.
Appendix A presents the norm used throughout the paper.
Appendix B gives a short presentation of the sensitivity equation and the adjoint methods.
Appendix C gives the proof of Lemma 1.
Appendix D gives the Fourier analysis of the aeroelastic problem which is discussed at Sec. 6.

2. The Multidisciplinary Analysis Problem. In a Multidisciplinary Analysis (MDA) problem a
coupled system of equations (typically PDEs) is solved,

Rj(Q1, · · · , QN) = 0 ; j = 1, · · · , N,(2.1)

whereRj denotes the j’th state equation andQk denotes the k’th state variable. IfRj is a differential operator
then in the discrete level each of the equations Rj is composed of a system of Nj algebraic equations and
each of the state variables Qj is a vector of the size Nj .

The notation (Ak1 , Ak2 , · · · , AkN ) is used to denote a GGS iteration for a MD system which is composed
of N state equations, where the integers (k1, k2, · · · , kN ) are a permutation of (1, 2, · · · , N); equation k1 is
solved first for the state variable Qk1 , then equation k2 for Qk2 and so on. The notation (Ak1‖Ak2‖ · · · ‖AkN )
is used to denote a GJ iteration in which all the equations are solved in parallel. Note that in the GGS case
there are N ! different sequences of iterations depending on the order of solutions while in the GJ case there
is only one choice.

For simplicity a two disciplines system will be considered from here on:

R1(Q1, Q2) = 0
R2(Q1, Q2) = 0.

(2.2)

The system (2.2) can be solved in a tightly coupled iterative algorithm for example by Newton’s method
or by an exact solver for the full system. One difficulty with a tightly coupled solution is that the full problem
is typically ill-conditioned; even if each of the disciplinary problems is well-conditioned (by preconditioning
for example), the Jacobian’s eigenvalues of one discipline will typically be different than the eigenvalues of
the second discipline. Another practical difficulty with this approach is the need to join together the analysis
codes of the different disciplines.
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2.1. A Generalized Gauss-Seidel (GGS) Scheme.

Definition:

A GGS iteration for the two discipline system (2.2) is defined by the following procedure (see Fig.(1)):

Scheme 1.1
Starting with an approximation (Qn

1 , Q
n
2 ) (from here on the notation n will be omitted, for example

Q1 ≡ Qn
1 ),

1. Solve for Qn+1
1 the equation R1(Qn+1

1 , Q2) = 0,

2. Solve for Qn+1
2 the equation R2(Qn+1

1 , Qn+1
2 ) = 0.

A2A1

R(Q , Q = Q ) = 0
Q , QQ , Q Q , Q

1 1 1
11

2
2 2

2 2

n n
n

nn+1 n+1n+1

R(Q = Q , Q) = 0
2 1 2

n+1

1

Fig. 1. GGS Iteration for the MDA Problem: (A1, A2).

In some cases the GGS sequential algorithm might require many MD iterations thus it might result with
a much higher computational cost than a tightly coupled solution. In such cases there is also a practical
difficulty since each of the disciplinary solutions is computed with a different code, thus each GGS iteration
requires information interchange between these codes.

However, in some cases the GGS scheme converges efficiently to the MD solution. In the rest of this
section the condition for convergence of GGS iteration is analyzed and a quantitative estimate of its con-
vergence rate, µa, is derived. This might serve as a tool to develop algorithms in complex systems where
possibly only a subset of the system may require tightly coupled solutions; for a system composed of more
than two disciplines it is possible to have a subsystem which is solved in a tightly coupled manner. For
example, in a three disciplines system it is possible to define the MD iteration (A1, [A2, A3]), i.e., solve state
equation number one for Q1 and then solve tightly coupled the state equations number two and three for
Q2 and Q3. It is possible that different sequences of GGS iterations result in different error reduction, e.g.,
(A1, A2, A3) versus (A1, A3, A1). In that case we would like to analyze which of the sequences results in a
maximum error reduction.

2.1.1. Linearization. A linear relationship between errors and residuals for the system of state equa-
tions is assumed. In the two disciplines system such a relationship can be written in a matrix form as(

R1,Q1 R1,Q2

R2,Q1 R2,Q2

) (
Q̄1

Q̄2

)
= −

(
R1

R2

)
(2.3)

where in general the quantities Rij depend on the state variables ~Q and where Q̄ and R̄ denote the errors
and residuals at iteration n respectively. The block matrices Ri,Qj are dominated by the Jacobian ∂Ri

∂Qj
and

are equal to it in linear systems. We will assume that the block diagonal matrices in (2.3) are invertible.
Note that in the differential level the quantities ∂Ri

∂Qj
should be understood as the Fréchet derivative of

a function space entity, Ri ∈ W , with respect to another, Qj ∈ X . Such a derivative is an operator from X
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to W :

Ri,Qj : X → W .

2.1.2. The GGS Iteration in terms of the System Jacobian. Starting with the states Q1 and
Q2 the GGS iteration (see scheme 1.1) can be written as

Qn+1
1 = Q1 + Q̃1

Qn+1
2 = Q2 + Q̃2

(2.4)

where Q̃1 and Q̃2 satisfy the following system of equations:(
R1,Q1 0
R2,Q1 R2,Q2

) (
Q̃1

Q̃2

)
= −

(
R1

R2

)
.(2.5)

2.2. Convergence Analysis.

Definition:

The convergence factor for the analysis problem (2.2), µa, is defined to be the maximum of the disciplinary
error reduction in the state variables as a result of one application of the MD iteration:

µa = max
{‖Q̄n+1

1 ‖
‖Q̄1‖ ,

‖Q̄n+1
2 ‖

‖Q̄2‖ , · · · , ‖Q̄
n+1
N ‖

‖Q̄N‖
}
.(2.6)

In non-linear problems the convergence factor depends on the state variables, µa = µa( ~Q).
For small values of µa the MDA problem can be solved with a small number of GGS iterations. The

higher the value of µa (but still smaller than one) the more GGS iterations required to solve the MDA
problem.

The convergence of the loosely coupled iteration is determined by the map T which relates the error, ~e,
to the the error after application of a MD iteration, ~en+1:

T : ~e→ ~en+1.(2.7)

In the following the map T is studied for the GGS and GJ iterations for the solution of the MDA problem.
We first find the explicit form of the map T (locally) and then take its maximal singular value, σ1(T ), as the
measure of its L2 norm (see Appendix A). The error decrease as a result of an MD iteration is estimated

‖~en+1‖ ≤ σ1(T )‖~e‖.(2.8)

We claim that any MD iteration, including the sequential GGS (which is characterized by a map T defined
in (2.7)) converges to the MD solution if and only if σ1(T n) < (1 − ε), for n > N where N is some integer
greater than unity, and ε is some real positive number smaller than unity: 0 < ε < 1.

Lemma 1:
For a two states system (2.2), starting with errors Q̄1 and Q̄2 in the state variables and assuming that

the errors satisfy the quasi-linear approximation (2.3), a GGS sequential iteration (A1, A2) results in the
following error relations:

Q̄n+1
1 =

(
R−1

1,Q1
R1,Q2(R

n−1
2,Q2

)−1Rn−1
2,Q1

)
Q̄1

Q̄n+1
2 =

(
R−1

2,Q2
R2,Q1R

−1
1,Q1

R1,Q2

)
Q̄2.

(2.9)

The proof is given in Appendix C.
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2.2.1. The Convergence Matrix. The convergence matrix for a two discipline system is defined by

Ma = R−1
2,Q2

R2,Q1R
−1
1,Q1

R1,Q2 .(2.10)

In terms of the convergence matrix the errors in the state variables are given by:

Q̄n+1
2 =

( 0∏
k=n

Mk
a

)
Q̄0

2(2.11)

Q̄n+1
1 = −(R1,Q1)

−1R1,Q2

( 0∏
k=n−1

Mk
a

)
Q̄0

2.(2.12)

Defining a new variable for discipline 1:

z1 = −R−1
2,Q2

R2,Q1Q1

we get that the error reduction in z1 is identical to the error reduction in Q2 at all iterations and therefore
we conclude that the convergence matrix determines the total error reduction in the system.

The local error at iteration n is bounded by (the same relation holds for z1)

‖Q̄2‖n+1 ≤ ‖Ma‖‖Q̄2‖.(2.13)

2.3. Connection with Classical Gauss-Seidel and Jacobi Methods. The iteration (2.4-2.5) is a
generalization of Gauss-Seidel (GS) iteration to systems of equations. When applying GS iteration to solve
an algebraic system of equations Ax = b where A is a matrix and x and b are vectors with proper dimensions,
then a GS iteration has the form

Mxn+1 = Nx+ b(2.14)

where M = D+L, N = −U , and D,L, and U are the diagonal, lower triangular, and upper triangular of A
respectively. The convergence of GS iteration is determined by the spectral radius ρ(M−1N) ([9] p.508):

Theorem 1:
Suppose b ∈ IR and A = M + N ∈ IRn×n is nonsingular. If M is nonsingular and the spectral radius

of M−1N satisfies the inequality ρ(M−1N) < 1, then the iterates x(k) defined by Mx(k+1) = Nx(k) + b

converge to x = A−1b for any starting vector x(0).

Generalized Gauss-Seidel

The MD iteration defined by (2.4-2.5) is a GS iteration (2.14) with

M =

(
R1,Q1 0
R2,Q1 R2,Q2

)
; N = −

(
0 R1,Q2

0 0

)
.(2.15)

The matrix M−1N is given by

M−1N =

(
0 R−1

1,Q1
R1,Q2

0 R−1
2,Q2

R2,Q1R
−1
1,Q1

R1,Q2

)
.(2.16)

By theorem 1 the iteration (2.4-2.5) converges if ρ(M−1N) < 1 where

ρ
(
M−1N

)
= ρ(R−1

2,Q2
R2,Q1R

−1
1,Q1

R1,Q2).(2.17)
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Note that the expression in (2.17) is the convergence matrix (2.10).

Generalized Jacobi
The sequential iteration (A1, A2) can be replaced by a parallel version (A1‖A2) where A1 is solved in

parallel to A2. This iteration will be called a “Generalized Jacobi” (GJ) MD iteration, since it is a Jacobi
iteration with

M =

(
R1,Q1 0

0 R2,Q2

)
; N = −

(
0 R1,Q2

R2,Q1 0

)
.(2.18)

The matrix M−1N is given by

M−1N =

(
0 R−1

1,Q1
R1,Q2

R−1
2,Q2

R2,Q1 0

)
.(2.19)

According to theorem 1 the GJ iteration converges if ρ(M−1N) < 1.
Eq. (2.19) implies that the asymptotic convergence rate of the GJ scheme is the square-root of the GGS,

i.e., the sequential (GGS) approach requires less MD iterations than the parallel (GJ) to converge.
In a similar manner other iterative schemes can be generalized to MD systems (e.g., Richardson, Kacz-

marz, Etc.). Also, it is possible to apply generalized acceleration techniques developed for systems of equa-
tions to MD systems, foe example, SOR of GS can be applied to accelerate the numerical convergence of
the GGS scheme; in that case the update will depend on the SOR parameter, ω, and one should choose the
SOR parameter, ω, such that minω ‖Ma(ω)‖. Extension of this work to acceleration of MDO schemes will
be discussed elsewhere.

3. The Multidisciplinary Sensitivity (Adjoint) Problem. In a Multidisciplinary Sensitivity Anal-
ysis (MDS) problem the sensitivities of the states or of a cost functional with respect to disciplinary “design
variables”, (b1, · · · , bM ), are computed. In the discrete level each bk is a vector of length Mk. The system
(2.1) now includes the design variables and have the following form

Rj(Q1, · · · , QN , bk) = 0 ; j = 1, · · · , N ; k ∈ Cj(3.1)

where Cj is a subset of the integers of {1, · · · ,M}.

In this section the problem of computing sensitivities of a cost functional, I, with respect to the design
variables is addressed. The cost functional, I, is a mapping between a vector space (a Hilbert space in the
PDE level) to the real numbers and is possibly dependent on all the variables:

I = I(Q1, · · · , QN , b1, · · · , bM ).

The “MDS problem” is the computation of the sensitivities:

(g1, · · · , gM ) ≡
( dI
db1

, · · · , dI
dbM

)
.(3.2)

As in the previous section, for the sake of simplicity, the discussion will be restricted to the following system
of equations which is related with aeroelasticity:

R1(Q1, Q2, b1) = 0
R2(Q1, Q2, b2) = 0.

(3.3)
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In the aeroelastic application Q1 stands for the flow variables, Q2 for the structural deflection, b1 the
aerodynamic shape and b2 for the structural rigidity (see Sec.5). Similar analysis can be done to any other
MD system.

Since there is only a single quantity as an “output” (the cost functional I) and many “inputs” (the
design variables {bk}M

k=1) the most efficient method to compute the sensitivities in such a case is the adjoint
method. A brief explanation of the adjoint method is given in appendix B (for a more rigorous treatment of
the subject see for example [12]).

Since the Jacobian in the adjoint equation is the adjoint of the Jacobian in the sensitivity equations
(obtained by direct differentiation) the convergence estimates for both are identical (see Appendix B).

3.1. Adjoint Formulation. The derivatives of the cost functional with respect to the design variables
(sensitivity gradients) are given by(

g1

g2

)
=

 ∂I
∂b1

+
(

∂R1
∂b1

)∗
Λ1 +

(
∂R2
∂b1

)∗
Λ2

∂I
∂b2

+
(

∂R1
∂b2

)∗
Λ1 +

(
∂R2
∂b2

)∗
Λ2

 ,(3.4)

where the Lagrange multipliers, Λ1 and Λ2, satisfy the following “adjoint” or “costate” equations” (Ibk

denotes ∂I
∂bk

and R∗i,Qj
denotes

(
∂Ri

∂Qj

)∗
):

P1(Λ1,Λ2, Q1, Q2, b1, b2) = Ib1 +R∗1,Q1
Λ1 +R∗2,Q1

Λ2 = 0
P2(Λ1,Λ2, Q1, Q2, b1, b2) = Ib2 +R∗1,Q2

Λ1 +R∗2,Q2
Λ2 = 0.

(3.5)

Note that the costate equations are linear in the costate variables, ~Λ, with non-constant coefficient that
depend on the state and design variables, ~Q and ~b respectively.

3.2. Multidisciplinary Feasible Sensitivity Solution: [S1, S2] ≡ [S1[A1, A2], S2[A1, A2]]. Each of
the disciplinary sensitivity calculations is assumed to be done on a MDA solution as shown in Fig.2. Since
the state equations are assumed to be solved prior to the solution of the MDS problem only the system (3.5)
is considered. In terms of the notations Rij , used in the previous section, the system of error equations is
given by (

R∗1,Q1
R∗2,Q1

R∗1,Q2
R∗2,Q2

) (
Λ̄1

Λ̄2

)
= −

(
P1

P2

)
(3.6)

where P1 and P2 are the residuals of the system (3.5) at iteration n. A GGS iteration and the convergence
factor are defined in similar to the MDA case and the convergence factor is given by a similar formula.

Notation.
The notation for a GGS iteration for a MD adjoint problem which is composed of N costate equations

is (Sk1 , Sk2 , · · · , SkN ) where the indices should be understood as in the analysis case.

Scheme 2.1: A GGS Adjoint Iteration
A GGS iteration of the two discipline system (3.5) is given by the following two steps, starting with an

approximation (Λ1,Λ2) and keeping the state (Q∗1, Q∗2) and the design (b1, b2) variables fixed:

1. Solve for Λn+1
1 the equation

P1(Λn+1
1 ,Λ2 = Λn

2 , Q
∗
1, Q

∗
2, b1, b2) = 0
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2. Solve for Λn+1
2 the equation

P2(Λ1 = Λn
1 ,Λ

n+1
2 , Q∗1, Q∗2, b1, b2) = 0.

1 1 1
1

2
2 2

2 2

n n
n n

nn+1 n+1n+1

2 1 2

n+1

11
Λ , Λ = Λ ) = 0 Λ = Λ , Λ ) = 0

S1 S2

Λ , Λ Λ , Λ Λ , Λ

Q , Q
1 2

** Q , Q
2

**
1

Q , Q
1 2

**

P ( P (

Fig. 2. MD Feasible Sensitivity Solution: [S1, S2] ≡ [S1[A1, A2], S2[A1, A2]].

Lemma 2.1:

For a two states system (3.6), starting with errors Λ̄1 and Λ̄2 in the costate variables and assuming fixed
states, a GGS iteration of the adjoint problem (S1, S2) results in the following relations for errors reduction:

Λ̄n+1
1 =

[
R−∗1,Q1

R∗2,Q1
(Rn−1)−∗2,Q2

(Rn−1)∗1,Q2

]
Λ̄1

Λ̄n+1
2 =

[
R−∗2,Q2

R∗1,Q2
R−∗1,Q1

R∗2,Q1

]
Λ̄2.

(3.7)

The proof is identical to the proof of Lemma 1.
The convergence matrix for the sensitivity problem is defined by

Ma∗ = R−∗2,Q2
R∗2,Q1

R−∗1,Q1
R∗1,Q2

.(3.8)

3.3. Single Discipline Feasible Sensitivity Solution: [S1(A1), S2(A2)]. In this section the conver-
gence factor for the combined computation of analysis and sensitivity, of a MD system as shown in Fig.3, is
estimated.

1 2 2

n n

1 2

(A , S ) (A , S )1 21 2

1

n n

2

1 2

n n

n+1 n+1n+1 n

1 2

n+1 n+1

2

n n+1

1

R (Q , Q = Q ) = 0 R (Q , Q = Q ) = 0
121

P ( P (Λ , Λ = Λ ) = 0
21 1 2 2

nn
Λ , Λ = Λ ) = 01

n+1

n+1
Λ , Λ Λ , Λ

Q , QQ , Q
1 2

Λ , Λ

Q , Q
1 2

Fig. 3. Single Discipline Feasible Sensitivity Solution: [S1(A1), S2(A2)].

Scheme 2.2: A GGS Analysis and Adjoint and Iteration
The process which is under consideration is summarized by the following two steps iteration, starting

with an initial approximation (Q0
1, Q

0
2,Λ

0
1,Λ

0
2) iteration n+ 1 (where n > 0) is given by:

Step 1: (A1, S1),

1. Solve for Qn+1
1 the state equation,

R1(Qn+1
1 , Q2 = Qn

2 , b1) = 0.
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2. Solve for Λn+1
1 the costate equation,

P1(Λn+1
1 ,Λ2 = Λn

2 , Q
n+1
1 , Qn

2 , b1, b2) = 0.

Step 2: (A2, S2),

1. Solve for Qn+1
2 the state equation,

R2(Q1 = Qn+1
1 , Qn+1

2 , b2) = 0.

2. Solve for Λn+1
2 the costate equation,

P2(Λ1 = Λn
1 ,Λ

n+1
2 , Qn+1

1 , Qn+1
2 , b1, b2) = 0.

Definitions:

The sensitivity convergence factor, µs, is defined to be the error reduction in the costate variables as a
result of one GGS analysis and adjoint iteration as defined by Scheme 2.2.

Lemma 2.2:

For a two states system (3.3), starting with errors Λ̄1 and Λ̄2 in the costate variables and assuming
that the errors in the state variables satisfy the quasi-linear approximation (2.3), then a GGS iteration
((A1, S1), (A2, S2)) for the solution of the MDS problem results in the following errors reduction:

ēn+1
1 = S−1

11 S12(Sn−1
22 )−1Sn−1

21 ē1

ēn+1
2 = S−1

22 S21S
−1
11 S12ē2.

where

Sij =

(
Ri,Qj 0
Pi,Qj Pi,Λj

)
(3.9)

and the errors ēi = (Q̄i, Λ̄i).

Proof:

The GGS analysis and adjoint iteration is updating the variables (Q1,Λ1) and (Q2,Λ2) with the quan-
tities ẽ1 and ẽ2 respectively which satisfy the following equation

−
(
r1

r2

)
=

(
S11 0
S21 S22

)(
ẽ1

ẽ2

)
(3.10)

where ri = (Ri, Pi).
We brought the MDS problem into the same form as the MDA problem (see Eqs. (2.3) and (2.5)) with

the changes Rij → Sij , Rj → rj and Q̄→ ē, and Q̃→ ẽ. Using Lemma 1 we conclude that

ēn+1
1 = S−1

11 S12(Sn−1
22 )−1Sn−1

21 ē1

ēn+1
2 = S−1

22 S21S
−1
11 S12ē2.

(3.11)

2

10



The convergence matrix of a GGS sensitivity (adjoint) iteration, (S1(A1), S2(A2)), is defined by

Ms = S−1
22 S21S

−1
11 S12.(3.12)

The convergence factor for the iteration (S1(A1), S2(A2)) is bounded from above by the maximum singular
value of Ms or equivalently by the square-root of the spectral radius of M∗

sMs:

µs ≤ ρ
1
2

(
M∗

sMs

)
.(3.13)

Note that the block diagonal terms in the convergence matrix, Ms, are Ma and Ma∗ :

Ms =

(
Ma 0
Mas Ma∗

)
.(3.14)

The eigenvalues of Ms are equal to the eigenvalues of Ma and Ma∗ . However the maximal singular
value of Ms is different than that of Ma and Ma∗ and therefore the convergence rate of the scheme
[S1(A1), S2(A2)] is possibly different than that of [S1[A1, A2], S2[A2, A2]].

4. The Multidisciplinary Optimization Problem. In a Multidisciplinary Optimization (MDO)
problem the minimum of a given cost functional with respect to the disciplinary design variables, (b1, · · · , bM ),
is computed:

min
(b1,···,bM )

I(Q1, · · · , QN , b1, · · · , bM ),(4.1)

subject to the MD state equations:

Rj(Q1, · · · , QN , bk) = 0 ; j = 1, · · · , N ; k ∈ Cj .

As in the previous sections, for the sake of simplicity, the discussion will be restricted to the following
problem which is related with aeroelasticity:

min
(b1,b2)

I(Q1, Q2, b1, b2)(4.2a)

subject to

R1(Q1, Q2, b1) = 0
R2(Q1, Q2, b2) = 0.

(4.2b)

The adjoint formulation is used for the derivation of the sensitivity gradients (see Sec. 3.1 and Appendix
B).

4.1. Multidisciplinary Feasible Optimization Solution: [O1, O2]. Each of the disciplinary opti-
mization problems is solved on a MDA and MDS feasible solutions (see Fig.4): [O1, O2] ≡ [O1([A1, A2], [S1, S2])
, O2([A1, A2], [S1, S2])]. Since zero errors in the states (3.3) and costates (3.5) are assumed, only the system
of the design equations (3.4) need to be considered:

Ib1 +R∗1,b1
Λ1 +R∗2,b1

Λ2 = 0
Ib2 +R∗1,b2

Λ1 +R∗2,b2
Λ2 = 0

(4.3)

11



where the following notation is used Ibk
= ∂I

∂bk
and R∗i,bj

= ∂R∗
i

∂bj
. In that case the system of error equations

for the design variables can be written as follows(
H11 H21

H12 H22

) (
b̄1

b̄2

)
= −

(
g1

g2

)
(4.4)

where g1 and g2 are the residuals when solving Eq.(4.3) (these residuals are equal to the sensitivity gradients)
and the matrix H is the transformation between errors and residuals of the design equations (gradients).
The matrices Hii are dominated by the disciplinary Hessians (assuming feasible state solution, the first order
term in a Taylor expansion of the gradient is the Hessian, thus, in the first order approximation, the Hessian
relates the errors in each of the disciplinary design variables with the negative gradient of that discipline).

Assuming MDA and MDS feasibility at each optimization step, the GGS iteration is defined as in the
MDA case with O replacing R and where equation (4.4) replaces (2.3) (the Hessian blocks, Hij , replace the
Jacobian blocks, Rij).

min I (b , b = b )
bb1

1 2 2
min I (b = b , b )1 1 2

n+1

Q , b , Λ

Q , b , Λ Q , b , 

Q , b , 

Λ

Λ

n+1

n+1

nnn

n n n
Q , b , 

n+1
Λ

Q , b , Λ

1 1 1

2222 2 2 2

1 1 1 1 1

n

2

Ο1 Ο2

R (Q , Q ) = 0
1 2 R (Q , Q ) = 0

1 2n

2

1 2

1,21,2

Λ , Λ ) = 0
21

P  (1,2 Λ , Λ ) = 0
21

P  (1,2

n+1

n+1n+1

n+1

Fig. 4. MD Feasible Optimization Solution: [O1, O2].

Lemma 3.1:

For a two disciplines optimization problem (4.2a-4.2b), starting with errors b̄1 and b̄2 in the design
variables the MD feasible scheme, [O1, O2], results in the following expressions for errors reduction:

b̄n+1
1 =

[
H−1

11 H21(Hn−1
22 )−1Hn−1

12

]
b̄2

b̄n+1
2 =

[
H−1

22 H12H
−1
11 H21

]
b̄2.

(4.5)

The proof is similar to the proof of Lemma 1.
The convergence matrix in that case is given by

MH = H−1
22 H21H

−1
11 H12,(4.6)

and the convergence factor is bounded by

µH ≤ ρ
1
2

(
M∗

HMH

)
.(4.7)

4.2. Single Discipline Feasible Optimization Solution: [O1(A1, S1), O2(A2, S2)]. In this section
we estimate the convergence factor for the solution in which there is decoupling of the analysis, the sensitivity,
and the optimization solutions of one discipline from the other as shown in Fig.5. In terms of the notation we
have used so far the decoupled scheme is denoted by [Ok1(Ak1 , Sk1), Ok2(Ak2 , Sk2)], i.e., optimizer of system
k1 is using repetitive calls to the analysis and sensitivity analyzers of system k1 (and uses fixed values of
states and sensitivities of system k2) followed by optimizer of system k2 which acts similarly for system k2.
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(A , S ) (A , S )O O

min I (b , b = b )
bb1

1 2 2

1

2

R (Q , Q = Q ) = 0

Λ , Λ = Λ ) = 0
2 2

21

1 R (Q = Q , Q ) = 0

Λ = Λ , Λ ) = 0

min I (b = b , b )1 1 2

2

2

1 1

111

1

n

n+1

n+1

n+1

Q , b , Λ

Q , b , Λ Q , b , 

Q , b , 

Λ

Λ2
n+1

n+1n+1n+1

n+1

nnn

n n n
Q , b , 

n+1n+1
Λ
n+1

Q , b , Λ
n n n

1 1 1

2222 2 2 2

1 1 1 1 1 1

n

1

n

n+1

2 2 21 11

22 P ( P (

Fig. 5. Single Discipline Feasible Optimization Solution: [O1(A1, S1), O2(A2, S2)].

The MD scheme under study is summarized by the following two steps scheme. Starting with an initial
approximation, (Q0

1, Q
0
2,Λ0

1,Λ0
2, b

0
1, b

0
2), iteration n+ 1 (where n > 0) is given by:

Scheme 3.2: A GGS MDO Iteration: (O1(A1, S1), O2(A2, S2))

Step 1: O1[A1, S1],

Solve for bn+1
1 the optimization problem

minbn+1
1

I(Qn+1
1 , Q2 = Qn

2 , b
n+1
1 , b2 = bn2 )

subject to

R1(Qn+1
1 , Q2 = Qn

2 , b
n+1
1 ) = 0.

Step 2: O2[A2, S2],

Solve for bn+1
2 the optimization problem

minbn+1
2

I(Q1 = Qn+1
1 , Qn+1

2 , b1 = bn+1
1 , bn+1

2 )

subject to

R2(Q1 = Qn+1
1 , Qn+1

2 , bn+1
2 ) = 0.

Lemma 3.2:

For a two disciplines optimization problem (4.2a-4.2b), starting with errors b1 and b2 in the design
variables and assuming that the errors in the states satisfy the quasi-linear approximation (2.3), then a
single discipline feasible GGS iteration, (O1(A1, S1), O2(A2, S2)), results in the following errors reduction:

ēn+1
1 =

(
O−1

11 O12(On−1
22 )−1On−1

21

)
ē1

ēn+1
2 =

(
O−1

22 O21O
−1
11 O12

)
ē2

where the matrices Oij are defined by

Oij =

 Ri,Qj 0 Ri,bj

Pi,Qj Pi,Λj Pi,bj

gi,Qj gi,Λj gi,bj

(4.8)

and ēi = (Q̄i, Λ̄i, b̄i).

Proof:

13



In terms of the matrices Oij the relation between the errors and the residuals is given by

−
(
r1

r2

)
=

(
O11 O12

O21 O22

)(
ē1

ē2

)
.(4.9)

where ri = (Ri, Pi, gi).
The GGS MDO iteration is updating the variables (Q1,Λ1, b1) and (Q2,Λ2, b2) with the quantities ẽ1

and ẽ2 respectively which satisfy the following equation:

−
(
r1

r2

)
=

(
O11 0
O21 O22

)(
ẽ1

ẽ2

)
.(4.10)

We brought the MDO problem into the same form as the MDA problem (see Eqs. (2.3) and (2.5)) with the
changes Ri,Qj → Oij , Rj → rj , Q̄→ ē, and Q̃→ ẽ. Using Lemma 1 we conclude that

ēn+1
1 =

(
O−1

11 O12(On−1
22 )−1On−1

21

)
ē1

ēn+1
2 =

(
O−1

22 O21O
−1
11 O12

)
ē2.

(4.11)

2

The convergence matrix in this case is given by

Mo = O−1
22 O21O

−1
11 O12.(4.12)

As a result of one iteration (O1(A1, S1), O2(A2, S2)) the total error in the variables of discipline 2 (and
also in the transformed variables of discipline 1 (see Sec.2.2.1)) ~e = (Q̄, λ̄, b̄) is reduced by

~en+1 = Mo~e.(4.13)

An upper bound for the convergence factor, µo, is estimated by the following formula:

µo ≤ ρ
1
2 (M∗

oMo).(4.14)

5. Test Case I: a Non-Linear Algebraic Example. In this section we treat a set of two non-linear
algebraic equations. The aim here is to demonstrate how the MD convergence estimates are computed when
the state equations are non-linear. In this example the estimates will be computed in the same space as the
numerical computation is performed, in contrast to the next section in which the estimates are approximated
in the infinite dimensional space while the equations are solved in finite dimension. In non-linear problems
the equations are first linearized and the convergence theory is applied to approximate the MD convergence
rate on the linearized system.

5.1. Multidisciplinary Analysis. Let us examine a simple set of non-linear algebraic equations:

x3
1 + x2 = b1

x1 + x3
2 = b2

(5.1)

where we set b1 = b2 = 2. A solution of the above system is given by (x1 = 1, x2 = 1).
A GGS iteration for the iterative solution of the system (5.1), (A1, A2), is the Gauss-Seidel (GS) iteration.

The convergence matrix (a scalar in this case) for the “MD” iteration (A1, A2) is given by (Eq. (2.13)):

µa(n > 1) ≤ R−1
2,Q2

R2,Q1R
−1
1,Q1

R1,Q2 =
1

9x2
1x

2
2

.(5.2)
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In this case the convergence factor depends on the states, x1 and x2. At the solution, (x1 = 1, x2 = 1), the
convergence factor is asymptotically equal to 1

9 thus the predicted asymptotic convergence rate for the GS
iteration for the solution of Eqs.(5.1) is µa = 1

9 .
Application of formula (C.8) for the first iteration results in the following inequality

µa(n = 1) ≤ max
{ 1

3x2
1

|x̄0
2|

|x̄0
1|
,

1
9x2

1x
2
2

}
.(5.3)

Fig.6 depicts the actual convergence rate versus the theoretical upper bound, where µtheory given in
(5.2-5.3), and

µactual = max
{ |x̄n+1

1 |
|x̄n

1 |
,
|x̄n+1

2 |
|x̄n

2 |
}
.

For n ≥ 2 both µtheory and µactual are equal to µ = 1
9 .

5.2. Multidisciplinary Adjoint. We define the cost functional

I(x1, x2) = (x1x2 − 1)2 +
1
4
x2

1 + x2
2,(5.4)

where x1 and x2 satisfy Eq.(5.1).
The sensitivities dI

db1
and dI

db2
are given by

g1 = dI
db1

= −λ1

g2 = dI
db2

= −λ2

(5.5)

where the costates, λ1 and λ2, satisfy the adjoint equations:

3x2
1λ1 + λ2 = −Ix1 = −

(
2x2(x1x2 − 1) + 1

2x1

)
λ1 + 3x2

2λ2 = −Ix2 = −
(
2x1(x1x2 − 1) + 2x2

)
.

(5.6)

5.2.1. Multidisciplinary Feasible Sensitivity Solution: [S1[A1, A2], S2[A1, A2]]. Since all the op-
erators in this case Ri,Qj are real scalars the convergence estimates are identical to the MDA case. In the
numerical test the MDA problem is solved first and then the GS scheme is applied to the adjoint system
(5.6). Fig.7a depicts the actual versus the upper bound convergence rate for this scheme. As in the MDA
case there is a good agreement between the theoretical upper bound and the actual convergence rates.

5.2.2. Single Discipline Feasible Sensitivity Solution: [S1(A1), S2(A2)]. We apply Lemma 2.2 to
estimate the upper bound for the convergence rate. In this case the matrices Sij are given by

S11 =

(
3x2

1 0
6x1λ1 + Ix1,x1 3x2

1

)
; S12 =

(
1 0

Ix1,x2 1

)
(5.7a)

S21 =

(
1 0

Ix2,x1 1

)
; S22 =

(
3x2

2 0
6x2λ2 + Ix2,x2 3x2

2

)
(5.7b)

where

Ix1,x1 = 2x2x2 + 1
2

Ix1,x2 = 4x1x2 − 2
Ix2,x1 = 4x1x2 − 2
Ix2,x2 = 2x1x1 + 2.

(5.8)
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The upper bound for the convergence rate is estimated by

µs ≤ ‖S−1
22 S21S

−1
11 S12‖.

In the numerical test scheme 2.2 was applied [S1(A1), S2(A1)]. Fig.7b depicts the actual versus theoretical
upper bound of the convergence for this case. The theoretical upper bound for the first GGS iteration is
µtheory(n = 1) ≈ 2.6 (n = 1 in the figure). The actual convergence rate approaches the MDA convergence
rate µa = 1

9 for n� 1.

5.3. Multidisciplinary Optimization. The optimization problem is defined by

min
b1,b2

I(x1, x2)(5.9)

subject to Eq.(5.1), where the cost functional I(x1, x2) is defined in (5.4).

5.3.1. Multidisciplinary Feasible Optimization Solution: [O1, O2]. The Hessian is computed
with a combination of the adjoint and direct-differentiation method (the combination of the adjoint and
sensitivity methods to compute the Hessian was originally introduced by R. Haftka [13]). The Hessian is
given by

H =
∂g

∂b
+
∂g

∂Q

∂Q

∂b
+
∂g

∂λ
λ
′

(5.10)

where λ
′
= ∂λ

∂b satisfies

∂P

∂b
+
∂P

∂Q

∂Q

∂b
+
∂P

∂λ
λ
′
= 0(5.11)

and P = P (Q, λ, b) denotes the residuals of the costate equation

P =
(∂R
∂Q

)∗
λ+

( ∂I
∂Q

)∗
.(5.12)

For the problem (5.9)

∂g
∂b = ∂g

∂Q = ∂P
∂b = 0 and ∂g

∂λ =

(
1 0
0 1

)
.(5.13)

Thus the Hessian is given by(
H11 H21

H12 H22

)
= λ

′
= −

(
∂P
∂λ

)−1
∂P
∂Q

∂Q
∂b =

= −
(

3x2
1 1

1 3x2
2

)−1(
6x1λ1 + Ix1,x1 Ix1,x2

Ix2,x1 6x2λ2 + Ix2,x2

)(
3x2

1 1
1 3x2

2

)−1

(5.14)

where Ixi,xj are given in (5.8)
The convergence factor µH for this scheme is estimated by

µH ≤ ρ
1
2 (M∗

HMH)(5.15)

where MH is given by

MH = H−1
22 H21H

−1
11 H12.(5.16)

16



In the numerical test each of the sub-optimization problems was solved at a time, i.e.,

O1 = min
b1

I(x1) ; O2 = min
b2

I(x2),

where full MDA and MDS feasibility were maintained at each solution. Fig. 8a depicts the actual versus
theoretical upper bound of the convergence for this case. The actual and theoretical upper bound convergence
factors for the first GGS iteration are given by µactual(n = 1) ≈ 2.7 and µtheory(n = 1) ≈ 9.5 respectively.
The asymptotic convergence rates are given by µactual(n = 1) ≈ 0.93 and µtheory(n = 1) ≈ 0.95.

5.4. Single Discipline Feasible Optimization Solution: [O1(A1, S1), O2(A2, S2)]. The conver-
gence of the GGS scheme, [O1(A1, S1), O2(A2, S2)], is determined by the matrices Oij defined in Eq.(4.8).
For the problem (5.9) the matrices Oij are given in the following:

O11 =

 R1,Q1 0 R1,b1

P1,Q1 P1,λ1 P1,b1

g1,Q1 g1,λ1 g1,b1

 =

 3x2
1 0 −1

6x1λ1 + Ix1,x1 3x2
1 0

0 −1 0

(5.17a)

O12 =

 R1,Q2 0 R1,b2

P1,Q2 P1,λ2 P1,b2

g1,Q2 g1,λ2 g1,b2

 =

 1 0 0
Ix1,x2 1 0

0 0 0

(5.17b)

O21 =

 R2,Q1 0 R2,b1

P2,Q1 P2,λ1 P2,b1

g2,Q1 g2,λ1 g2,b1

 =

 1 0 0
Ix2,x1 1 0

0 0 0

(5.17c)

O22 =

 R2,Q2 0 R2,b2

P2,Q2 P2,λ2 P2,b2

g2,Q2 g2,λ2 g2,b2

 =

 3x2
2 0 −1

6x2λ2 + Ix2,x2 3x2
2 0

0 −1 0

 .(5.17d)

An upper bound for the convergence factor is estimated by the spectral radius of M∗
OMO, where

MO = O−1
22 O21O

−1
11 O12:

µo ≤ ρ
1
2 (M∗

OMO).

Fig.8b depicts the actual versus theoretical upper bound of the convergence for this case. The actual and
theoretical upper bound convergence factors for the first GGS iteration are given by µactual(n = 1) ≈ 1.9 and
µtheory(n = 1) ≈ 4.3 respectively. In the numerical test the solution of the problem was obtained after the
third iteration in which the error was reduced by a factor of approximately 1.75 · 10−6 (the optimal solution
is given by x1 = 1, x2 = 1

2 , b1 = 1 1
2 , and b2 = 1 1

8 ). It is interesting to note that in this case the solution
required much less optimization steps than in the previous case where full feasibility was maintained. This
was predicted by the analysis although the upper bound for the convergence is higher than the one found in
practice: for n > 1, µtheory ≈ 0.25.
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6. Test Case II: A Coupled System of PDEs Modeling Static Aeroelasticity. In this section
we treat a set of two coupled PDEs with the aim to demonstrate how estimates in the PDE level can be used
to approximate the different convergence factors in the problem. Since the actual numerical computation is
done in a finite dimensional space, the continuum estimates holds only in the limit of the discrete mesh-size,
h, approaching zero. Nevertheless, the continuum estimates give a good approximation of the actual discrete
convergence (as long as the discrete mesh is not too coarse). The coupling estimates can be derived also in
the discrete level where the different Jacobians are large matrices (rather then operators).

In this example we use Fourier analysis and Parseval’s relation to estimate the norms of the convergence
operators involved, however it is not necessarily the only way to get such estimates. The problem under
consideration is linear in the state variables with non-constant coefficients. However, the optimization
problem is non-linear since the design variables multiply the states. In the general case where the state
equations are non-linear the first step in the analysis is to linearize them resulting in a linear equation with
non-constant coefficients similar to the problem under consideration in this section.

This problem contains some of the physical features of static aeroelasticity. Aeroelastic optimization
is a major MDO problem in aerospace industry (e.g., [14] and references their-in). The aerodynamic state
equation models the flow around a body and the design variables are some parameters defining the shape
of that body. The aerodynamic cost functional is typically the drag or some measure of the closeness to
some specified pressure distribution. The structure state equation typically results from a finite element
analysis of the structure and the design variables are some parameters which determine the stiffness of the
structure. The structure cost functional is typically the weight and there are constraints on the stress on
different elements in the structure. There is not a unique way to define an MDO problem in that field and
hence we will assume a simple model problem that contains some of the physics of the real problem.

6.1. Problem Definition. We consider a two dimensional potential flow over a one dimensional beam.
The MDO problem is to compute the set of rigidity parameters, {Dh

i }N
i=1, and the set of shape parameters,

{αh
i }N

i=1, such that the following cost functional is minimized (we denote the discrete quantities by a super-
script h),

F h(φh,Wh, αh, Dh) =
N∑

i=1

[
γ1

(
∂xφ

h
i − f∗hi

)2

+ γ2(Dh
i )

1
2 + γ3(∂xφ

h
i )W h

i + γ4
1
2
(αh

i )2
]

(6.1)

subject to the inequality constraint

Dh
i ≥ Dmin 1 < i < N(6.2)

and to the following finite difference equations,

(1−M2∞)∂h
xxφ

h
i,k + ∂h

zzφ
h
i,k = 0 1 < i, k < N

∂h
z φ

h
i,1 = ∂h

x (αh
i +Wh

i ) 1 < i < N

φh
1,k = φh

2,k 1 < k < N

φh
N,k = φh

N−1,k 1 < k < N

φh
i,N = 0 1 < i < N

(6.3)

∂h
xx(Dh

i ∂
h
xxW

h
i ) = −ph

i

(
(φh

x)i

)
1 < i < N

W h
1 = Wh

N = 0
∂h

xxW
h
1 = ∂h

xxW
h
N = 0 for a simply supported beam

(6.4)
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where ∂h
x , ∂

h
z , ∂

h
xx and ∂h

zz denote finite difference operators for the first and second derivatives in the x and
z directions respectively.

The pressure, p, depends on the potential by the Bernoulli law (we assume ∂xφ� U∞):

p = p∞ + ρ∞U2
∞∂xφ.(6.5)

In the numerical test the far field parameters were set to unity except the far field Mach number which was
set to zero (the latter was chosen to simplify the analytical estimate of the coupling):

p∞ = ρ∞ = U∞ = 1 ; M∞ = 0.

The forth term in the cost functional was added for uniqueness of the optimal solution α∗ (since only the
derivative ∂xα appears in the equations). The weights in the cost functional were determined to establish a
significant coupling between the disciplines, i.e., at the optimal solution the deflection, W ∗, and the shape,
α∗, have the same order of magnitude:

γ1 = 1 ; γ2 = 0.01 ; γ3 = −1 ; γ4 = 1.

In order to avoid singularities in the beam equation, Dh = 0, an inequality constraint has been applied
on the rigidity:

D(x) ≥ Dmin(x) 0 ≤ x ≤ 1(6.6)

where the minimal value of the rigidity was set to Dmin(x) = 10−4.
The computational grid consisted of an (N ×N) grid on which the potential equation was solved in the

whole domain while the beam equation was solved on the boundary (z = 0). On each grid point on the
boundary, 1 ≤ i ≤ N , two design variables were defined: αh

i and Dh
i .

6.2. MDA. The MDA problem is to solve the system of discretized PDEs (6.3-6.4) for φh and Wh

where the design parameters, αh and Dh, are fixed. A GGS iteration is composed of two steps; solving
Eq.(6.3) for φh keeping Wh fixed, followed by the solution of Eq.(6.4) for Wh keeping φh fixed. By Eq.(2.13)
the convergence of the above GGS iteration is determined by the norm of the convergence matrix, Ma =
R−1

2,Q2
R2,Q1R

−1
1,Q1

R1,Q2 . In the following Fourier analysis in the continuum level is used to estimate the
norm of Ma. Since the estimate is derived in the continuum level and the numerical test is done in the
discrete level, the derived estimate is only an approximation (that is expected to be more accurate with the
refinement of the discretization).

An Estimate of the convergence factor using Parseval’s Relation

We now make use of Parseval’s relation to estimate the norm of the convergence matrix, Ma, in the
PDE level. Parseval’s relation states that the L2 norm of the error in real space is equal to the L2 norm of
the error in Fourier space:

‖~e‖L2 = ‖~̂ek‖L2 .(6.7)

By Eq.(2.13)

~en+1
2 = Ma~e2(6.8)
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and therefore (see Appendix A)

‖~en+1
2 ‖ ≤ max

k

(
M̂∗

aM̂a

) 1
2 ‖~e2‖.(6.9)

An upper bound for the convergence factor, µa, is estimated with

µa ≤ max
k

(
M̂∗

aM̂a

) 1
2

= max
k

( (2kπ)2

Ĝ∗W (D)ĜW (D)

) 1
2
.(6.10)

6.2.1. Numerical Results. In the numerical test the scheme [A1, A2] was applied. A random number
generator was used to give the initial values to the state variables, φh and Wh. At each iteration the single
discipline analysis problem (the the potential equation for φh) was solved to machine zero accuracy, keeping
the other discipline state variables (Wh) fixed. This was followed by solving the second discipline analysis
problem (Beam equation for Wh) while keeping the updated values of the first discipline (φh) fixed. The
equations were solved with a second order accurate finite difference iterative method.

Fig.9 depicts the actual convergence rate versus the theoretical upper bound, where µtheory given in
(6.10) and

µactual = max
{‖φ̄n+1‖
‖φ̄n‖ ,

‖W̄n+1|
‖W̄n‖

}
.

Since ĜW (D) in (6.10) depends on the values of the rigidity, {Dh
i }N

i=1, the estimate (6.10) was computed by
the analysis code for the actual values of the rigidity at each iteration. An alternative could have been a good
a-priori estimate of the minimum value of ĜW (D). The results show good agreement with the predictions
of the convergence estimates. It is interesting to note that although the estimate for the convergence factor
depends on the non-constant coefficient Dh still the predicted values of µa are fixed (for n > 1) on the value
µtheory ≈ 7× 10−3, possibly due to the determination of the extremal values of Dh, ∂xD

h and ∂xxD
h during

the early stage of the computation. The actual convergence rate is about µactual ≈ 1 − 3 × 10−3, (lower
than the upper bound estimate). After the fourth iteration the errors in the state variables reach the level
of machine accuracy and the computation is terminated.

6.3. MDS. In the MDS problem the sensitivities on the cost functional, (6.1), are computed with
respect to the design variables Dh and αh. We choose to use the adjoint method (see appendix B) to
compute these sensitivities since it is the most efficient method if there are less “outputs” (in this case the
only output is the cost functional) than “inputs” (2N design variables) in the problem.

The costate equations for that problem, in the continuum level, are given by (the costate flow and
structure variable are denoted by Λ1 = λ and Λ2 = η respectively):

Flow Costate Equation

∆λ = 0 in Ω = {0 < x < 1 ; 0 < y < 1}
∂zλ = ∂xη + 2γ1(∂xxφ− ∂xf

∗) + γ3∂xW on z = 0
∂xλ = 0 on x = 0
∂xλ = 0 on x = 1
λ = 0 on z = 1.

(6.11)
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Structure Costate Equation

∂xx(D∂xxη) = −∂xλ− γ3∂xφ on z = 0 ; 0 < x < 1
η(0) = η(1) = 0

∂xxη(0) = ∂xxη(1) = 0 for a simply supported beam .

(6.12)

Having defined the states and costates, the sensitivity gradients, g1 = dF
dα and g2 = dF

dD , are given by

g1 = ∂xλ+ γ4α

g2 = ∂xxη∂xxW + γ2
2 D

− 1
2

on z = 0 ; 0 < x < 1.(6.13)

The MDS problem, for this example, is to solve Eqs.(6.11-6.12) for λ and η. We apply two schemes:
the MD feasible sensitivity solution [S1, S2] and the single discipline sensitivity solution [S1(A1), S2(A2)]
requiring only single discipline state feasibility at each step (see Secs.3.2-3.3).

Multidisciplinary Feasible Sensitivity Solution: [S1, S2]
By Lemma 2.1 (Eq.(3.8)) the convergence matrix for the MD feasible sensitivity scheme is given by

Ma∗ = R−∗2,Q2
R∗2,Q1

R−∗1,Q1
R∗1,Q2

=
2kπ

Ĝ∗W (D)
= M∗

a.(6.14)

We conclude that

‖Ma∗‖ = ‖Ma‖,(6.15)

thus we predict the same convergence factor as in the MDA case.

Single Discipline Feasible Sensitivity Solution: [S1(A1), S2(A2)]
The symbol of the convergence matrix for that scheme is given by (see Eq.(3.14))

M̂s = Ŝ−1
22 Ŝ21Ŝ

−1
11 Ŝ12 =

(
M̂a 0
M̂as M̂a∗

)
where

M̂a =
(
M̂a∗

)∗
=

2kπ
ĜW (D)

; M̂as =
4kπ(γ3 − γ12kπ)

ĜW (D)
.(6.16)

An upper bound for the convergence rate is estimated by

µs ≤ max
k

ρ
1
2

(
M̂∗

s(k)M̂s(k)
)
.(6.17)

6.3.1. Numerical Results. In the numerical test the two schemes [S1, S2] and [S1(A1), S2(A2)] were
tested.

Multidisciplinary Feasible Sensitivity Solution: [S1, S2]

In the numerical test the MDA problem was solved first and then the GGS scheme was applied to the
adjoint system (6.11-6.12). A random number generator was used to give the initial values to the costate
variables: λh and ηh. The same procedure as in the MDA case was repeated for the adjoint equations.
The theoretical upper bound in this case is identical to the one in the MDA problem (Eq. 6.15). Fig.10a
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depicts the actual versus the upper bound convergence rate for this scheme. For iteration number n > 1
the theoretical upper bound settles on µtheory ≈ 8 × 10−3 while the actual convergence rate for n > 1 is
µactual ≈ 2− 4× 10−3.

Single Discipline Feasible Sensitivity Solution: [S1(A1), S2(A2)]

In this case a random number generator was used to give the initial values to both the state and costate
variables: φh, Wh, λh and ηh. At each iteration the single discipline analysis and adjoint problems were
solved sequentially (the analysis problem is independent of the adjoint problem).

Fig.10b depicts the actual convergence rate versus the theoretical upper bound, where µtheory given in
(6.17) and

µactual = max
{‖φ̄n+1 + λ̄n+1‖

‖φ̄n + λ̄n‖ ,
‖W̄n+1 + η̄n+1‖
‖W̄n + η̄n‖

}
.

For iteration number n > 1 the theoretical upper bound, computed by (6.17), settles on µtheory ≈ 1.1×10−2

while the actual convergence rate for n > 1 is µactual ≈ 1− 5× 10−3.

6.4. MDO. The MDO problem is to solve the optimization problem (6.1-6.4). The MDO problem is
divided into two sub-optimization problems: O1 and O2. In O1 the design variable is αh while Dh is fixed
and in O2 it is visa versa. In the numerical test two schemes were applied: the MD feasible scheme, [O1, O2],
and the single discipline feasible scheme, [O1(A1, S1), O2(A2, S2)].

6.4.1. Fourier Analysis for the MD Feasible Scheme [O1, O2]. By Eq.(4.6) the convergence matrix
in this case is given by

MH = H−1
22 H21H

−1
11 H12.(6.18)

Following [10] the symbol of the Hessian for this problem is computed by the following procedure. The map,
in Fourier space, between the errors in the design variables and the state variables is computed:(

φ̂(k)
Ŵ (k)

)
= −

(
2πk −2πik
2πik ĜW (D)

)−1( −2πik 0
0 ĜD(W )

)(
α̂(k)
D̂(k)

)
(6.19a)

The solution of (6.19a) is substituted in the following equation for the map, in Fourier space, between the
errors in the design variables and the costate variables:

(
λ̂(k)
η̂(k)

)
= −

(
2πk −2πik
2πik ĜW (D)

)−1(
2γ1(2πk)2 −γ3(2πik)
γ3(2πik) 0

)(
φ̂(k)
Ŵ (k)

)

−
(

2πk 2πik
2πik ĜW (D)

)−1(
0 0
0 ĜD(η)

)(
α̂(k)
D̂(k)

)
.(6.19b)

Finally, both the solutions of (6.19a) and of (6.19b) are substituted in the expression for the symbols of
the sensitivity gradients to compute the map, in Fourier space, between the errors in the design variables
and the residuals of the design equations (the gradients):
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(
ĝ1(k)
ĝ2(k)

)
=

(
0 0
0 ĜD(η)

)(
φ̂(k)
Ŵ (k)

)
+

(
2πik 0

0 ĜD(W )

)(
λ̂(k)
η̂(k)

)

+

(
γ4 0
0 −γ2

1
4D

− 3
2

)(
α̂(k)
D̂(k)

)
.(6.19c)

As discussed in [10] the symbol of that map is the symbol of the MD Hessian:(
ĝ1(k)
ĝ2(k)

)
= −

(
Ĥ11(k) Ĥ12(k)
Ĥ21(k) Ĥ22(k)

)(
α̂(k)
D̂(k)

)
.(6.20)

Having computed the symbol of the convergence matrix for that problem,

M̂H(k) = Ĥ−1
22 (k)Ĥ21(k)Ĥ−1

11 (k)Ĥ12(k),

an upper bound for the convergence rate is estimated by

µH ≤ max
k

ρ
1
2

(
M̂∗

H(k)M̂H(k)
)
.(6.21)

6.4.2. Fourier Analysis for the SD Feasible Scheme [O1(A1, S1), O2(A2, S2)]. By Lemma 3.2 the
convergence matrix in this case is given by

Mo = O−1
22 O21O

−1
11 O12(6.22)

where the operators Oij are defined in (4.8).
The matrices Ôij are given in the following:

Ô11 =

 R̂1,Q1 0 R̂1,b1

P̂1,Q1 P̂1,λ1 P̂1,b1

ĝ1,Q1 ĝ1,λ1 ĝ1,b1

 =

 2πk 0 −2πik
2γ1(2πk)2 2πk 0

0 2πik γ4

(6.23a)

Ô12 =

 R̂1,Q2 0 R̂1,b2

P̂1,Q2 P̂1,λ2 P̂1,b2

ĝ1,Q2 ĝ1,λ2 ĝ1,b2

 =

 −2πik 0 0
−γ3(2πik) −2πik 0

0 0 0

(6.23b)

Ô21 =

 R̂2,Q1 0 R̂2,b1

P̂2,Q1 P̂2,λ1 P̂2,b1

ĝ2,Q1 ĝ2,λ1 ĝ2,b1

 =

 2πik 0 0
γ3(2πik) 2πik 0

0 0 0

(6.23c)

Ô22 =

 R̂2,Q2 0 R̂2,b2

P̂2,Q2 P̂2,λ2 P̂2,b2

ĝ2,Q2 ĝ2,λ2 ĝ2,b2

 =

 ĜW (D) 0 ĜD(W )
0 ĜW (D) ĜD(η)

ĜD(η) ĜD(W ) −γ2
1
4D

− 3
2

 .(6.23d)

Using Parseval’s relation an upper bound for the convergence factor is estimated by the maximal singular
value of M̂O, or equivalently by

µo ≤ max
k

ρ
1
2 (M̂∗

O(k)M̂O(k)),(6.24)

where M̂O = Ô−1
22 Ô21Ô

−1
11 Ô12.
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6.4.3. Numerical Results. In the numerical test the two schemes [O1, O2] and [O1(A1, S1), O2(A2, S2)]
were tested.

Multidisciplinary Feasible Optimization Solution: [O1, O2]

In the numerical test the MDA and MDS problems were solved to machine zero accuracy at each
optimization step. The theoretical upper bound for the convergence rate was computed by (6.21), and the
actual rate by

µactual = max
{‖ᾱn+1‖
‖ᾱn‖ ,

‖D̄n+1‖
‖D̄n‖

}
.

In that case the error in αh reduced at the first iteration by a factor of 1.3×10−5 while that ofDh by 3.7×10−6.
Since the error reduction is so significant the computation is terminated after two iterations due to the low
numbers involved in the computation at this stage. The theoretical upper bound is µtheory ≈ 3.5 × 10−2

which is much higher than the actual convergence rate.

Single Discipline Feasible Optimization Solution: [O1(A1, S1), O2(A2, S2)]

In this case at each iteration the single discipline optimization problem was solved while keeping the
variables of the other discipline fixed.

Fig.11 depicts the actual convergence rate versus the theoretical upper bound, where µtheory given in
(6.24) and

µactual = max
{‖φ̄n+1 + λ̄n+1 + ᾱn+1‖

‖φ̄n + λ̄n + ᾱn‖ ,
‖W̄n+1 + η̄n+1 + D̄n+1‖

‖W̄n + η̄n + D̄n‖
}
.

In this case the actual convergence rate for iterations 2,3,4, and 5 are given by 5.5 × 10−4, 1.84 × 10−3,
8.8× 10−4, and 1.02× 10−2. The theoretical upper bound is µtheory ≈ 5.2× 10−2. As discussed in [10] the
fast convergence of sequential algorithms applied to the aeroelastic model problem indicates of weak coupling
between the two disciplines.

7. Discussion and Concluding Remarks. We present a quantitative analysis to determine the
convergence rate of loosely coupled schemes for solving MD systems of equations.

The sequential scheme, where the problems are solved in the disciplinary level “one-at-a-time”, is iden-
tified as a generalization of the Gauss-Seidel (GGS) iterative method. The parallel version of the sequential
scheme, where the problems are solved in the disciplinary level in parallel exchanging coupling data after
each MD iteration, is identified as a generalization of the Jacobi (GJ) iterative method. Other iterative
schemes can be generalized to MD systems (e.g., Richardson, Kaczmarz, Etc.).

The asymptotic convergence rate for the GGS scheme can serve a measure for the coupling between the
disciplinary problems since the looser the coupling is the lower is the value of that convergence rate. An
upper bound for the convergence rate (convergence factor) is estimated for the multidisciplinary analysis
(MDA), sensitivity (MDS), and optimization (MDO) problems.

Five different basic schemes are considered (given here for problems composed of two disciplinary sub-
problems). In all the schemes the convergence matrix is given in the general form M = Z−1

22 Z21Z
−1
11 Z12. The
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quantities Zij depend on the scheme under consideration and are summarized here for the different schemes
presented in the paper:

• Sequential GGS scheme for the MDA problem, [A1, A2]: Zij = Ri,Qj

• Sequential GGS scheme for the MDS problem
– MD feasible sensitivity solution, [S1, S2]: Zi,j = R∗j,Qi

– Single discipline feasible sensitivity solution, [S1(A1), S2(A2)]:

Zi,j =

(
Ri,Qj 0
Pi,Qj Pi,Λj

)

• Sequential GGS scheme for the MDO problem
– MD feasible optimization solution, [O1, O2]: Zi,j = Hi,j

– Single discipline feasible optimization solution, [O1(A1, S1), O2(A2, S2)]:

Zi,j =

 Ri,Qj 0 Ri,bj

Pi,Qj Pi,Λj Pi,bj

gi,Qj gi,Λj gi,bj

 .

For all of these schemes an upper bound for the convergence factor is estimated by µ ≤ σ1(M), where σ1

denotes the maximal singular value of M. In problems governed by PDEs the quantities M are operators,
typically non-differential, which measure the coupling between the disciplines in the problem.

The convergence theory was applied to two test cases: a system of two non-linear algebraic equations
and a system of two PDEs which model an aeroelastic system (in both test cases there are non-linearities
causing the coupling to be a local property). In both test cases MDA, MDS, and MDO problems were
defined, analyzed, and tested numerically. In the first test case it is demonstrated how the convergence
factors can be estimated in a finite dimensional level. In the second test case it is demonstrated how the
convergence factors can be estimated in the PDE level; such estimates are expected to be more accurate
as the discretization refines. The symbol of the convergence operators were computed explicitly and where
estimated on the boundary (which is the interface between the two disciplines involved). The symbols
indicate that the convergence operators are pseudo-differential and contain the information of the coupling
between the two disciplines. We think that these operators play a major role in the theory of MDO governed
by PDEs. The numerical results are compatible with the analytical estimates.

In applications, where large codes are involved, the different convergence factors can be approximated
numerically, locally, using numerical computation (in the disciplinary level) of the Jacobians and Hessians of
the different disciplines in the problem. These convergence factors can serve as a tool to develop algorithms
for the solution of MD problems. When a problem is composed of more than two disciplines the convergence
factor can be estimated between all the different disciplines. For example, if the problem is composed of
three disciplines and the convergence factor of the iteration (A1, A2) and that of (A1, A3) is much smaller
than that of (A2, A3), then the scheme (A1, [A2, A3]) is expected to have desired convergence properties.

For MDO problems which have a “system level”, e.g., for O[(A1, S1),(A2, S2),(A3, S3)] the convergence
theory can be applied to define algorithms for the solution of the MDA and MDS problems. Extension of
this work to acceleration of MDO schemes will be discussed elsewhere.
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Appendix A. Norms. Throughout the paper the L2 norm is used. In the following we define it for a
vector, a matrix, a function, and a differential operator:

• Let ~u be a vector in Cn, then

‖~u‖2 = ~uT · ~u,

• Let A be a matrix in Cm×n, then,

‖A‖ = sup
~u∈Cn

‖A~u‖
‖~u‖ ,

• Let v = v(x) be a function in a Hilbert space H, then

‖v‖2 =
∫
v2(x)dx,

• Let L be a differential operator L : H →W where W is a Hilbert space, then

‖L‖ = sup
v(x)∈H

‖Lv‖
‖v‖ .

Theorem [15]
For any A ∈ Cm×n, the L2 norm of A is given by

‖A‖ = σ1(A) = ρ
1
2

(
A∗A

)
where σ1 is the maximal singular value and ρ is the spectral radius.

Corollary
Using the above theorem and Parseval’s relation, the L2 norm of a differential operator can be bounded

by

‖L‖ ≤ max
k

ρ
1
2

(
L̂∗(k)L̂(k)

)
,

where L̂(k) denotes the symbol of the operator L.

Appendix B. The Sensitivity Equation and the Adjoint Methods. Let L be a partial differential
operator defining the following PDE:

L(Q, b1, · · · , bM ) = 0,

where Q denotes the state variables and bj denote the j’th design variable. Let I = I(Q, b1, · · · , bM ) be a
functional. The sensitivity problem is to compute the derivatives

gj =
dI

dbj
.(B.1)
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A brief summary of the “sensitivity equation method” (also known as “direct-differentiation”) and of the
”adjoint method” are given in the following. For a more extensive treatment of these methods see for example
[16]-[17] for the sensitivity equation method and [12],[18] for the adjoint method.

B.1. The Sensitivity Equation Method. The sensitivity equations are a linear set of M equations
given by

LQψj + Lbj = 0 for 1 ≤ j ≤M,(B.2)

where the solutions ψj are the sensitivities of the state variables with respect to the design variables on all
the domain:

ψj =
dQ

dbj
.(B.3)

In terms of the sensitivities, the derivatives of the cost functional with respect to the design variables are
given by

gj =
∂I

∂Q
ψj +

∂I

∂bj
for 1 ≤ j ≤M.(B.4)

B.2. The Adjoint Method. With the adjoint method the computation of the derivatives gj is done
with the solution of only one linear PDE, rather than M , irrespective of the number of design variables.

The adjoint equation, for the adjoint variable λ, is a linear PDE is given by

L∗Qλ+
∂I

∂Q
= 0.(B.5)

where the operator L∗Q is the adjoint of LQ. In terms of the adjoint variable, λ, the derivatives of the cost
functional with respect to the design variables are given by

gj = L∗bj
λ+

∂I

∂bj
.(B.6)

Appendix C. Lemma 1.

Lemma 1:

For a two states system (2.2), starting with errors Q̄1 and Q̄2 in the state variables and assuming that
the errors satisfy the quasi-linear approximation (2.3), a GGS sequential iteration (A1, A2) results in the
following error relations:

Q̄n+1
1 =

(
R−1

1,Q1
R1,Q2(R

n−1
2,Q2

)−1Rn−1
2,Q1

)
Q̄1

Q̄n+1
2 =

(
R−1

2,Q2
R2,Q1R

−1
1,Q1

R1,Q2

)
Q̄2.

(C.1)

Proof:

The solution sequence (A1, A2) of system (2.2) implies first solving R1 for Q1 and then solving R2 for
Q2 as defined in Eqs.(2.4-2.5). The solution of Eq.(2.5) is given by(

Q̃1

Q̃2

)
= −

(
R−1

1,Q1
0

−R−1
2,Q2

R2,Q1R
−1
1,Q1

R−1
2,Q2

) (
R1

R2

)
.(C.2)
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Let (Q∗1, Q
∗
2) denote the solution of the coupled system (2.2). The errors after a GGS iteration (2.4) are

given by

Q̄n+1
1 = Q∗1 − (Q1 + Q̃1) = Q̄1 − Q̃1

Q̄n+1
2 = Q∗2 − (Q2 + Q̃2) = Q̄2 − Q̃2.

(C.3)

Substitution of (C.3) in (2.3) gives(
Rn+1

1,Q1
Rn+1

1,Q2

Rn+1
2,Q1

Rn+1
2,Q2

) (
Q̄1 − Q̃1

Q̄2 − Q̃2

)
= −

(
Rn+1

1

Rn+1
2

)
.(C.4)

Substitution of (C.2) in (C.4) gives

−
(
Rn+1

1

Rn+1
2

)
=

(
Rn+1

1,Q1
Rn+1

1,Q2

Rn+1
2,Q1

Rn+1
2,Q2

)
K
(
Q̄1

Q̄2

)
(C.5)

where

K =

(
1 0
0 1

)
−
(
R1,Q1 0
R2,Q1 R2,Q2

)−1(
R1,Q1 R1,Q2

R2,Q1 R2,Q2

)
.(C.6)

Using relations (2.3) and multiplication of Eq.(C.5) from the left by the matrix(
Rn+1

1,Q1
Rn+1

1,Q2

Rn+1
2,Q1

Rn+1
2,Q2

)−1

results in the following relation between the errors before and after a GGS iteration for MDA:(
Q̄n+1

1

Q̄n+1
2

)
=

[(
1 0
0 1

)
−
(

R−1
1,Q1

0
−R−1

2,Q2
R2,Q1R

−1
1,Q1

R−1
2,Q2

)(
R1,Q1 R1,Q2

R2,Q1 R2,Q2

)](
Q̄1

Q̄2

)
(C.7)

¿From Eq.(C.7) it is concluded that

Q̄n+1
1 = −(R1,Q1)−1R1,Q2Q̄2

Q̄n+1
2 = R−1

2,Q2
R2,Q1R

−1
1,Q1

R1,Q2Q̄2.
(C.8)

By the above two relations the following holds:

Q̄n+1
1 = −

(
R−1

1,Q1
R1,Q2

)(
(Rn−1

2,Q2
)−1Rn−1

2,Q1
(Rn−1

1,Q1
)−1Rn−1

1,Q2

)
Q̄n−1

2(C.9)

and

Q̄1 = −
(
(Rn−1

1,Q1
)−1Rn−1

1,Q2

)
Q̄n−1

2 .(C.10)

Substituting Q̄n−1
2 of relation (C.10) in relation (C.9) results in an expression for the error reduction in Q1:

Q̄n+1
1 =

(
R−1

1,Q1
R1,Q2(R

n−1
2,Q2

)−1Rn−1
2,Q1

)
Q̄1.(C.11)

2
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Appendix D. Fourier Analysis of the Aeroelastic Problem.

D.1. The Analysis Problem. The error equations are analyzed with Fourier analysis resulting in the
symbols of the Jacobian operators, Ri,Qj . Then Parseval’s relation is applied to estimate the norm of the
operators Ri,Qj in the real space.

The Flow Analysis Problem: R1(φ, β) = 0

The analysis problem, R1, is given by the following PDE (in this specific case the error equation is
identical to the state equation):

∆φ = 0 in Ω = {0 < x < 1 ; 0 < y < 1}
∂zφ = β on z = 0
∂xφ = 0 on x = 0
∂xφ = 0 on x = 1
φ = 0 on z = 1

(D.1)

where β = β(x) is some non-constant L2[0, 1] function.
The solution of Eq.(D.1) is given by

φ(x, z) =
∞∑

k=−∞,k 6=0

β̂k

2πk
ψk(z)ei(2πkx)(D.2)

where

ψk(z) = − tanh(2πk) cosh(2πkz) + sinh(2πkz).(D.3)

Since the function |ψk(z)| has a maximum at z = 0 in the interval z ∈ [0, 1], for all k, we conclude that

|φ(x, z)| ≤ |φ(x, 0)| 0 ≤ z ≤ 1(D.4)

and therefore, for the sake of error convergence, we will examine the error in φ on the boundary only (z = 0).
By Eq.(D.2) on the boundary φ = φ(x) satisfies

φ(x, 0) = −∑∞
k=−∞,k 6=0 β̂k

tanh(2πk)
2πk ei(2πkx)

φz(x, 0) =
∑∞

k=−∞,k 6=0 β̂ke
i(2πkx).

(D.5)

We conclude the following symbols of the Jacobians:

R̂1,φ(k) = − 2πk
tanh(2πk) ; R̂1,W (k) = −2πik

R̂1,α(k) = −2πik ; R̂1,D(k) = 0.
(D.6)

The Structure Analysis Problem: R2(W,D) = 0

The analysis problem, R2, is given by the following PDE (simply supported boundary conditions):

∂xx(D∂xxW ) = −p on z = 0 ; 0 < x < 1
W (0) = W (1) = 0

∂xxW (0) = ∂xxW (1) = 0.

(D.7)
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Linearization of (D.7) results in the following error equation

∂xx(D̄∂xxW ) + ∂xx(D∂xxW̄ ) = −p̄ on z = 0 ; 0 < x < 1
W̄ (0) = W̄ (1) = 0

∂xxW̄ (0) = ∂xxW̄ (1) = 0.

(D.8)

The errors W̄ , D̄, and p̄ are expanded by a Fourier series:

W̄ (x) =
∞∑

k=−∞,k 6=0

Ŵke
i(2πkx) ; D̄(x) =

∞∑
k=−∞,k 6=0

D̂ke
i(2πkx) ; p̄(x) =

∞∑
k=−∞,k 6=0

p̂ke
i(2πkx).(D.9)

Substitution of (D.9) into (D.8) results in an expression for the symbol of R2:

R̂2 = ĜW (D)Ŵ + ĜD(W )D̂ + p̂φφ̂(D.10)

where

ĜW (D) = D(2πk)4 − 2i(∂xD)(2πk)3 − (∂xxD)(2πk)2

ĜD(W ) = −(2πk)2∂xxW + 2(2πik)∂xxxW + ∂xxxxW

p̂φ = 2πik.

(D.11)

Therefore, the symbols of the Jacobians are give by

R̂2,φ(k) = 2πik ; R̂2,W (k) = ĜW (D)
R̂2,α(k) = 0 ; R̂2,D(k) = ĜD(W ).

(D.12)

D.2. The Adjoint Problem.
The Adjoint Flow Problem

The symbol of the adjoint flow operator P1 on the boundary is given by (P1(λ, η, φ,W ) = ∂zλ − ∂xη −
2γ1∂xxφ− γ3∂xW )

P̂1(k) = − 2πk
tanh(2πk)

λ̂− (2πik)
(
η̂ + γ3Ŵ

)
+ 2γ1(2πk)2φ̂,(D.13)

therefore the symbols of the Jacobians are given by

P̂1,φ(k) = 2γ1(2πk)2 P̂1,W (k) = −γ3(2πik)
P̂1,λ(k) = − 2πk

tanh(2πk) P̂1,η(k) = −2πik

P̂1,α(k) = 0 P̂1,D(k) = 0.

(D.14)

The Adjoint Structure Problem
The symbol of the adjoint structure operator P2 on the boundary is given by (P1(λ, η, φ,D) = ∂xx(D∂xxη)+

∂xλ+ γ3∂xφ)

P̂2(k) = ĜW (D)η̂ + ĜD(η)D̂ + (2πik)(λ̂+ γ3φ̂),(D.15)

therefore the symbols of the Jacobians are given by

P̂2,φ(k) = γ3(2πik) P̂2,W (k) = 0
P̂2,λ(k) = 2πik P̂2,η(k) = ĜW (D)
P̂2,α(k) = 0 P̂2,D(k) = ĜD(η).

(D.16)
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Fig. 6. Actual convergence rate versus theoretical upper bound for the GGS (sequential) solution of the non-linear algebraic

system.
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Fig. 7. Actual convergence rate versus theoretical upper bound for the MD feasible (left) and single discipline feasible

(right) sensitivity Solution of the non-linear algebraic system.
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Fig. 8. Actual convergence rate versus theoretical upper bound for the MD feasible (left) and single discipline feasible

(right) optimization solution of the non-linear algebraic system.
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Fig. 9. Actual convergence rate versus theoretical upper bound for the GGS (sequential) solution of the aeroelastic problem.
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Fig. 10. Actual convergence rate versus theoretical upper bound for the MD feasible (left) and single discipline feasible

(right) sensitivity solution of the aeroelastic problem.

0

0.05

0.1

0.15

0.2

1 2 3 4 5

µ

n

[O1(A1, S1), O2(A2, S2)]

actual 3

3 3 3

3

theory +

+ + + +

Fig. 11. Actual convergence rate versus theoretical upper bound for the single discipline feasible optimization solution of

the aeroelastic problem.
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